
One Laptop, One Policy, Many Terrains: Efficient Training of
Generalisable Quadruped Locomotion Policies via Adaptive Rewards

Sándor Felber1,2, Thomas Corbères1, Jiayi Wang1, Antonin Bretagne1, Steve Tonneau1

Abstract— Navigating unstructured terrains with quadruped
robots requires sophisticated locomotion capable of adapting
to diverse environmental conditions. Existing RL-based single-
policy methods work well when fine-tuned for a subdomain
of terrains and obstacles but do not generalise well to oth-
ers. Hierarchical multi-policy approaches comprising several
individual locomotion policies trained for each type of ter-
rain with a higher level neural network to switch between
low-level policies exhibit greater adaptability at the cost of
intensive computational resource requirements for retraining
and onboard deployment which results in a labour-intensive
hand-tuning and distillation process. We propose the adoption
of a terrain adaptive reward shaping method that leverages
privileged height observations during training encapsulated in
a singular locomotion policy. This offers robust adaptability
to a wide range of terrains, and through independent terrain-
specific rewards and efficient and easily adaptable training. Our
method is trainable on a single commercial laptop GPU in a
few hours and leverages real-time inferences from the elevation
map of the robot’s surrounding terrain for the classification of
terrain type. We find that our method improves generalisability
of single-policy locomotion to challenging terrains without the
computational overhead of hierarchical multi-policy approaches
which often require days to train. We validate the training
efficiency, generalisability, and robustness of our method on
existing and newly generated terrain types in simulation and
in real-world experiments. The project website can be found
here: https://adaptive-rewards.github.io

I. INTRODUCTION

Research on quadruped locomotion aims at proposing
robust means to control the motion of a legged robot in
arbitrary terrain. In recent years, this research has been
driven by industry and the motivation to tackle dangerous
and repetitive tasks such as inspection of off-shore oil rigs
or participating in first-response to natural disasters [1]–[3].
This industrial interest has resulted in a variety of affordable
and reliable quadruped platforms that benefit the research
effort [4]–[7].

The contemporary adoption of Deep Reinforcement Learn-
ing (DRL) as a means to control quadruped robots offers a
seducing alternative to traditional control techniques, with
the promise of learning a control policy offline that can
be queried efficiently at runtime, rather than solving a
computationally expensive trajectory optimisation problem
online. Various learning-based frameworks have successfully
enabled quadrupeds with agile locomotion skills resembling
human parkour as they climb stairs twice their height [8]
and jump or leap over gaps twice their length [9], [10], or
robustly perform dynamic gaits and handshakes [11], [12].

1University of Edinburgh 2Massachusetts Institute of Technology
felber@mit.edu

One area of progress regarding DRL frameworks concerns
the ability of a learned policy to generalise to new environ-
ments without sacrificing performance on existing ones as
the learning progresses [13]. Another challenge is identifying
the optimal set of reward functions to fulfil the role of an
information guide to the actor-critic learning framework [14].
Overall, DRL often struggles with effective exploration and
generalisation of rewards, particularly in environments where
rewards are sparse and less frequent.

Multi-policy approaches, such as those by [8], [15]–[17],
have demonstrated greater success in generalising across
diverse terrains. These methods involve training multiple
individual locomotion policies for each terrain type and
utilising a high-level neural network to switch between them.
However, increasing the number of networks also escalates
complexity and training time, as exemplified by Zhuang
et al.’s method [15], which trains individual policies for
various terrain types necessitating a relatively long training
and at least two GPUs for policy distillation. Additionally,
large multi-stage policies can demand substantial on-board
computing resources [18], [19].

Approaches using a single DRL-policy [9], [10], [20]–[23]
work well for a subdomain of terrains and obstacles that they
have been carefully fine-tuned for but their generalisability to
additional new terrains remains a challenge. Relevant recent
work is summarised in Table I.

Regardless of the policy training approach, sim-to-real
transfer comes with the limitation that simulation is often
unable to encompass all possible terrains that will be en-
countered at deployment, leading to unmodeled scenarios and
ultimately failure to generalise to one of the environments
in the target application. This necessitates the capability of
a locomotion policy to be adaptable and retrainable at the
deployment site quickly and with minimal computational
requirements.

However, adding a new terrain type or obstacle into
an existing framework with optimised rewards requires a
new set of rewards that will work for both the existing
environments and the new one. To find an optimal set of
reward functions for the new set of terrains, iterative reward
shaping can be attempted, a laborious and ineffective tuning
process that ultimately leads to a suboptimal compromise
between the two optimal sets of rewards for the old terrains
and the new terrain. When a new terrain requires completely
opposite rewards to ones beneficial for traversing others, it
is often impossible to successfully train a policy for both

https://adaptive-rewards.github.io


TABLE I: Comparison of various methods on challenging locomotion tasks relative to the robot’s body proportions. Skills
in Continuous Sequence refer to the policy’s ability to tackle all challenges in one run one after the other. 1

Method Robot Locomotion Skills Skills in Sequence # of NNs Flat (Only) Training Time* Training Time*
Climb Gap Ramp Crouch Trench Tilt Bridge Tilt

Rudin et. al [20] AnymalC 1.1 0.75 × × × × ✓ 1 3 min 18 min
Hoeller et. al [8] AnymalC 2 1.5 × × × × ✓ 8 N/A N/A
Zhuang et. al [15] Unitree-A1 1.6 1.5 × 0.76 0.93 × × 5 6 h 82 h
Cheng et. al [10] Unitree-A1 2 2 37◦ × × × ✓ 1 N/A 26 h
Chane-Sane et. al [22] SOLO12 0.93 × 24◦ 0.77 × × ✓ 1 10 min N/A
Adaptive Sim (ours) SOLO12 0.73 0.3 32◦ × 0.83 0.8 ✓ 1 23 min 3 h
Adaptive Real (ours) SOLO12 0.25 × 15◦ × 0.8 0.8* ✓ 1 23 min 3 h

terrains as shown in the supplementary video.
To address the above and the problem of computationally

efficient generalisability in quadruped locomotion, we pro-
pose to use terrain adaptive reward shaping, which decouples
the reward functions and weights to any distinguishable
terrain type (within the limits of the simulation and policy ob-
servations) while leaving the reward function on the original
terrain unchanged. This allows the integration of new terrains
without compromising performance on existing terrains as
the rewards and the training for existing terrains can remain
untouched, while the new rewards can be tailored to the new
terrain without constraints from the previous terrain. New
rewards can be added and existing reward functions and
scales can be disabled or enabled when the agent encoun-
ters the specific terrain type, allowing for a higher degree
of customisability of the trained behaviour with minimal
computational overhead yielding a similar training time to
existing single-policy methods. The proposed architecture for
testing and validating our approach is displayed in Figure 1.

Fig. 1: Training Architecture

Our method enables the training of a single locomotion
policy that is able to adopt rewards during massively parallel
training specific to the environment on any new distinguish-
able terrain type. It is easily trainable on a single commer-
cially available laptop for new terrains at deployment. This
has been validated through simulations in IsaacGym and

1All training times refer to training the locomotion policy (without policy
distillation) tested with NVIDIA RTX 4090 Mobile GPU (16GB VRAM).
Adaptive Rewards Sim refers to IsaacGym. Our real-world experiments
were completed without perception with synthetic height maps. *To avoid
hardware damage, bridge hardware tests were done on flat terrain.

PyBullet, as well as through empirical testing in real-world
experiments on the SOLO12 quadruped. These experiments
confirm that our method yields an agile and robust DRL
policy transferable to real-world applications that require
generalisation to terrains with competing reward landscapes.
Our method enables generalisation and sequential, continu-
ous traversing across a range of obstacles which previously
has only been seen in segmented, multi-policy controllers
[8], [18] but with the computational efficiency and simplicity
offered by single-policy controllers [10], [15].

1) An adaptive reward shaping training framework
integrating massively parallel DRL with curriculum
learning: to demonstrate the enhanced adaptability of
the locomotion policy, we create and add two new obsta-
cles (narrow trenches and bridges) requiring different,
competing rewards against the existing baseline terrains
in [20].

2) A generalisable locomotion policy efficiently train-
able on a commercial laptop: we show that our method
enables the efficient training of a single continuous
locomotion policy traversing various obstacles of un-
structured environments in a single run without resets
or restarts. We evaluate efficiency by evaluating training
time in Table I.

3) Evaluation of sim-to-real performance: we evaluate
performance gaps between simulation and real-world
experiments through comparing success rates and re-
porting the measured control loop frequencies.

II. RELATED WORK

A. Optimal Control

Optimal control-based strategies have predominantly
guided legged mobile robotics, demonstrated by vari-
ous trajectory optimisation and model-predictive control
(MPC) methods on quadrupeds such as MIT’s Cheetah and
MiniCheetah [24], [25], ETH’s Anymal, and StarlETH [26]–
[30], among others [31]–[36]. Although these methods have
demonstrated capability for enabling agile and autonomous
locomotion in controlled settings, their generalisable deploy-
ment across diverse environments is still constrained [29],
[37]–[39].

B. Learning-based Methods

More recently learning based methods have demonstrated
a wide range of skills on quadruped robots, including stairs



[40], [41], trotting and running [42]–[44], jumping [9], [45],
[46], crouching [22], [47] and various other parkour-like
skills [8], [10], [15] and even interacting with dynamic
objects, such as dribbling a ball [48] but transitions between
discrepant terrains remains a challenge.

Notably, Margolis et. al [21] proposed encoding multiple
locomotion strategies trained on flat ground into a single
policy while providing a human operator a set of tunable
parameters. The operator can manually tune the gait pattern
enabling robust locomotion in unseen environments includ-
ing stair climbing, crouching, and traversing sudden drops.
Limitations include requiring an operator at deployment and
reduced performance on individual skills like high-speed
running.

C. Training Efficiency

Considering efficient training, many recent works focus
on optimising training efficiency for an idealised quasi-
planar surface with some smaller obstructions. Authors of
[20], [49]–[51] report training times in the domain of
minutes. More sophisticated control systems able to tackle
more challenging non-planar terrains have time-consuming
training pipelines that train separately for each skill [15].
For instance, [8] requires 8 different neural networks some
of which are interdependent. Such multi-stage hierarchical
frameworks require GPU clusters to train and extended
training times for all neural networks. Another example is
[18], where deploying the trained DRL policy requires a large
amount of computational resources exceeding the available
onboard computational capabilities of the quadruped for agile
motion making real-world deployment impossible without
additional computers mounted onto the robot or remotely
aiding it.

D. Adapting Rewards

Fig. 2: Height Map (Top)
& Visualisation in PyBullet
(Bottom).

Two notable ways for the
application of dynamic re-
wards include using a cus-
tomised reward function for
each different environment
relying on domain-specific
knowledge [52], [53] or the
automated [54]–[57] encod-
ing of knowledge into a
(possibly potential) reward
function [58]. In this work,
we propose and validate a
method under the scope of
the former via incorporat-
ing adaptable reward func-
tions triggered by inferring
the terrain type surrounding
each individual agent during
training.

To further enhance the
agent’s adaptability and learning efficiency, we incorporate
curriculum learning. This strategy involves starting with

TABLE II: Summary Table of Observations

Feature Description

Base Linear Velocity vlin = (vx,vy,vz) ∈ R3

Base Angular Velocity ω = (ωroll,ωpitch,ωyaw) ∈ R3

Projected Gravity on Base gproj = (gx,gy,gz) ∈ R3

Commands cmd∗ = (v∗x ,v
∗
y ,ω

∗
yaw) ∈ R3

Joint Positions θ = (θ1, . . . ,θ12) ∈ R12

Joint Velocities θ̇ = (θ̇1, . . . , θ̇12) ∈ R12

Previous Actions aprev = (a1, . . . ,a12) ∈ R12

Surrounding Elevation Map H ∈ R33×21

simpler tasks and progressively increasing the difficulty, a
method shown to improve learning outcomes [20], [59]–[61].

III. PRELIMINARIES

Shown in Figure 1, the proposed control system archi-
tecture integrates a neural network-based controller (actor)
and a proportional-derivative (PD) controller for robotic joint
actuation. It processes a reference velocity against current
joint states to determine errors, which the actor uses to set
desired positions. These are then refined by the PD controller
to compute the necessary torques at high frequencies (PD
controller at 10 kHz and actor at 100 Hz). We track refer-
ence linear and angular velocities and yaw while robustly
navigating challenging terrains without necessitating policy
swaps, thus ensuring the generalisability and computational
efficiency of the method.

A. States and Observations
The control system’s input comprises 48 proprioceptive

and 693 height measurements provided as privileged infor-
mation during training. The height map grid is made up
of approximately equally spaced sampling points arranged
in a grid of 33x21 over the 1.6 m long and 1 m wide
area around the centre of the robot’s base. This yields a
longitudinal sampling rate of approximately 48.5 mm and
a lateral sampling rate of 47.6 mm as shown in Figure 2.
The observations serving as the input of the policy’s neural
network are summarised in Table II.

While authors of [62] argue that torque control is more
robust to larger external disturbances than position control,
[63] showed that it is harder to learn torque control directly
which is supported by other works in the literature opting
for position control [41], [48], [64]–[66].

B. Actions
The action space comprises a 12-dimensional vector, a ∈

R12, representing the radial displacement (angle) for the ith

rotational joint. The actions in a are the learned displace-
ments (∆qt ) and the target joint positions can be computed
as:

qtarget
t = qinit +λq∆qt , (1)

where qinit are the robot’s nominal joint configuration
around which the policy actions are centred [66]. λq is
defined as a constant scaling factor for the output actions
before adding to qinit and subsequently clipping to avoid out-
of-bound control commands that could damage the hardware
or the environment. The base position and rotation are
indirectly controlled and measured via SOLO’s built-in IMU
through the steps of the output learned action.



C. Training Setup

Curriculum learning structures the learning process pro-
gressively, starting with simpler tasks and gradually introduc-
ing more complex ones as the agent’s capabilities improve
for better exploration of the solution space and avoidance
of local minima [60], [67]–[69]. The success of curriculum
learning has been demonstrated for quadruped robots in [20],
[41], [42], [70], [71].

To demonstrate the plasticity of our method we add two
new environments to the 2D-matrix terrain tile configuration
proposed by [20]. The environment includes twenty terrain
tile columns and ten rows increasing in difficulty, from
smooth surfaces to near-impossible obstacles as shown in
Fig 3. Narrow passages are simulated with concentric radial
trench and bridge terrains, with 1x1m spawning areas and
headings quantised to the nearest 45◦. Difficulty adjusts auto-
matically based on traversal success as we train for 10-15,000
policy update iterations. No negative rewards are applied
for 500 iterations to encourage exploration, followed by a
gradual increase in penalties over 4500 updates following
P(x) = x1.5, where x denotes the episode count.

(a) Down-
ward
slope

(b)
Upward
slope

(c) Rough
slope

(d) Stairs
down-
ward

(e) Stairs
upward

(f)
Discrete
terrain

(g)
Stepping
stones

(h) Gap
terrain

(i) Pit ter-
rain

(j) Trench (k) Bridge

Fig. 3: Terrain Types Used In Training

Domain randomisation (noise parameters in the training)
is introduced to simulate real-world perturbations during
training as described in Table III.

Ground friction coef-
ficients are varied be-
tween 0.5 and 1.25, and
random dynamic pushes
are exerted every 15
seconds to mimic un-
expected external forces
encountered in applica-
tion environments.

TABLE III: Noise Parameters

Noise Type Scaling
Overall Noise Level 1.0
Position Disturbance (DOF) 0.01
Velocity Disturbance (DOF) 1.5
Linear Velocity Noise 0.1
Angular Velocity Noise 0.2
Gravity Variations 0.05
Height Measurement Noise 0.1
Classification Noise 0.05

IV. ADAPTIVE REWARD SHAPING

We combine adaptive reward shaping with privileged
height map information during training, curriculum learning,
and massively parallel DRL using Proximal Policy Optimiza-
tion.

We utilise a set of 21 reward functions and penalties
available on the project website. We build on the rewards
proposed by [66], which provide a tested foundation for

robust locomotion on smooth and rough flat terrains. We
then enhance this to adapt to inclined terrains, stairs, and
steps. When the agent infers from the elevation map that it is
about to enter a specific terrain type, such as a narrow bridge,
then a flag for this specific terrain type triggers a swap of
rewards or weights for this terrain, which in turn changes the
trained behaviour (such as collision aversion, stance width,
or step height) of the quadruped. The comprehensive reward
function parametrised by time t is defined as:

rt = w · r =
[
wlinear velocity wfoot clearance . . . wtermination

]
·


rlinear velocity
rfoot clearance

...
rtermination

 (2)

The vector w contains weights for each reward compo-
nent, allowing precise adjustments to tailor the optimisation
landscape, thereby influencing the behaviour of the robot
directly. Our framework proposes dynamically adjusting both
the weight and the function based on terrain type, enhancing
training plasticity and eliminating competing reward func-
tions to ensure optimal performance. In the following section,
we demonstrate our method through an example.

A. Example Terrain Adaptive Reward: Foot Clearance

To be able to effectively approach and enter a narrow
passage, the quadruped needs to reduce the step height to
smaller, more nuanced steps that are more suitable for this
terrain type. By separating the original reward into two
conditional rewards, both the reward function and its weight
can be freely changed without affecting the default reward
to facilitate this.

An example penalty function pair for the original terrain
with scaling factor 25 and the new terrain (scaling factor of
5) is:

−25∗ rclearance =

{
0, in trench or on bridge

−25∗∑
n
i=1(zfooti − ztarget)

2
√

v2
footi

, otherwise
(3)

−5∗ rclearance* =

{
−5∗∑

n
i=1(zfooti − ztarget)

2
√

v2
footi

, in trench or on bridge

0, otherwise.
(4)

When entering narrow passages, where lateral space is
highly constrained, the default foot height reward needs to be
reduced to mitigate penalties associated with divergence from
the reference point. The lower foot clearances enable the
quadruped’s front or rear legs to fit through the entrance of
the narrow trench and navigate it more effectively, otherwise,
the quadruped struggles to traverse the narrow passage. It is
important to note that the low foot clearance would hinder
locomotion on uneven rough terrain, and elevations such as
stairs and steps.

Shaping the foot clearance reward, there are two ways
to achieve the desired terrain-specific behaviour without
changing the reference: 1. tuning the weight of the reward to
enable a broader exploration of the parameter space without
significant rewards or penalties incurred during the training,
or 2. change the terms of the function defining the foot
height reward, ztarget, to scale differently fostering a de-
creased step height together with quicker steps. By utilising



TABLE IV: Success Rates on Different Terrains across Platforms. Ours includes both the privileged height map and adaptive
rewards in simulation and synthetic height maps in the real world.

Terrain Type IsaacGym Simulation PyBullet Simulation Real-World Deployment
Baseline +Height Map Ours Baseline +Height Map Ours Baseline +Height Map Ours

Planar Terrain 100% 100% 100% 100% 100% 100% 100% 100% 100%

Planar with Random Obstacles 60% 100% 100% 60% 80% 100% 60% 100% 100%

Inclined Terrain & Stairs 0% 80% 100% 0% 60% 60% 0% 60% 60%

Trench/Bridge 0% 0% 90% 0% 0% 80% 0% 0% 80%

All but Inclines/Stairs Continuously 0% 0% 90% 0% 0% 90% 0% 0% 80%

All Continuously 0% 0% 100% 0% 0% 80% 0% 0% 40%

separate definitions for the default and the trench-specific
foot clearance reward as in Eq. 3 and 4 respectively, changing
the scale and the function terms at once is not a mutually
exclusive operation—any weight could be assigned to any
reward function. During training, the actors interact with the
various terrain types as they approach, traverse, and leave
them, and in doing so they automatically learn a seamless
transition between the various optimisation landscapes of
the different reward functions. By adjusting the weights
and the terms of the reward function, we enable the RL
agent to exhibit fundamentally different behaviours tailored
to specific environmental scenarios provided that the agent
can identify which terrain it is traversing from a function.

B. Inferring Terrain Type from The Elevation Map

Fig. 4: Agent before entering a trench (left) and in trench
(right), with amber colour indicating the change of rewards.

For example, the algorithm compares mean heights from
two longitudinal side stripes (shown in green and red in
Figure 4) to that of the middle stripe to recognise trench-
like conditions at each episode rollout encompassing approx-
imately 0.5 s of simulation time. This comparison informs
the agent when to adjust its gait and tilting strategy for
optimal navigation through narrow passages. If the policy is
played in simulation, the change of terrain causes the agent to
transition to the gait learned under the new reward paradigm
specific to that terrain. The implementation of this dynamic
tilting reward function ensures that the robot can effectively
modify its posture and gait in real-time, enabling it to traverse
narrow passages.

V. SIMULATION AND HARDWARE EXPERIMENTS

A. Training Efficiency

Using 4096 environments in parallel training for 10000
iterations and a batch size of 98304 on a terrain matrix
of 20x10, the complete training can be completed in less
than 3 hours locally on a commercially available laptop with

i9-13900H CPU and NVIDIA RTX 4090 Mobile (16GB
VRAM) GPU and in approximately 5-6 hours on a 2080
Ti Desktop GPU with 12GB of VRAM. This is significantly
more efficient than existing methods. We slightly varied the
terrain ratios, curriculum start and end, and rewards scales
across 20 training runs, all of which trained successfully.

B. Evaluation in Simulation and Real-World

Adapting gait to new environments can be observed from
simulation results: note the narrow stance of the agent
combined with its base being tilted (roll) in Fig. 4, allowing
it to fit into the narrow trench. Collision reward adoption is
shown in the supplementary video.

Fig. 5: Angular velocity (yaw) [rad/s] tracking in simulation
(PyBullet) without (top) and with (middle) privileged height
map information, and in the real world (bottom). While the
tracking is noisy attributable to taking steps to and from
elevated surfaces without perception in the real world (falling
and colliding with walls), it remains accurate and follows the
reference. (Motion capture and observation measurements
overlap in all cases.)

To evaluate the performance of the policy, an obstacle



course was created involving rough inclined terrain, gravel,
and stairs to climb together with a narrow bridge and trench
to demonstrate the adaptability of the method shown in the
supplementary video. We define success rate as successfully
traversing the given individual obstacle in 20s or all of
the obstacles in 2 minutes without getting stuck. Fig 5
demonstrates a successful sim-to-real transfer. The reported
trench width is 0.22m in simulation and 0.25m (SOLO12 is
0.3m wide, but its "normal" walking gait is approx. 0.4m
wide) where we find a similar success rate.

The robustness of the locomotion policies was assessed
through 10 attempts of evaluation with the reference com-
mands of Table V spanning simulations in IsaacGym, Py-
Bullet, and real-world field tests summarised in Table IV
demonstrating the usefulness of incorporating privileged
height maps and adaptive rewards into the baseline policy.
Note that the lack of perception makes tackling inclined
terrains and stairs challenging.

TABLE V: Command parameter ranges.

Command Parameter Minimum Value Maximum Value

Linear Velocity X [m/s] -1.0 1.0

Linear Velocity Y [m/s] -0.8 0.8

Angular Velocity Yaw [rad/s] -0.65 0.65

Heading [rad] -3.14 3.14

C. Transferability

Although the trained policy transfer from IsaacGym to
PyBullet to SOLO12 produces similar success rates, when
playing the trained policy, we find a slight, but noticeable
difference in the apparent gait of the quadruped between
simulation and the real world. However, the velocity tracking
remains uncompromised as shown in Fig 5. A notable dis-
crepancy between PyBullet and hardware experiments is the
peak in computation time at initialisation as shown in Table
VI. Overall, the policies trained transferred successfully to
the real robot with a small sim-to-real gap. This is supported
by the findings of [36] attributing the relatively small sim-to-
real gap to the lightweight form factor, low inertia actuators,
and high control bandwidth.

D. Neural Network Computation and Control Loop Perfor-
mance

Results in Table VI indicate that while the simulation en-
vironment can achieve high average performance, it exhibits
substantial variability under worst-case conditions which can
be attributed to the computational load of the PyBullet Sim-
ulator. In contrast, the hardware experiment implementation
which does not rely on the simulator demonstrates consistent
performance with less severe worst-case degradation main-
taining an inference frequency of 320.51 Hz, which is more
than 3 times the frequency of the control loop at 100 Hz.
On average, hardware inference runs at 0.17 ms (5882 Hz),
yielding a high-frequency control loop yielding a responsive,
agile, and robust quadruped walking controller.

TABLE VI: Summary of results of 5-5 tests with a duration
of 5 seconds in PyBullet simulator and on the SOLO12
quadruped measuring the frequency of neural network in-
ference and of the full control loop.

Average Results
NN Computation Control Loop Duration NN % of Loop

Time [ms] Frequency [Hz]
Avg Peak Avg Peak

Simulation 0.43 2.11 2326 474 43%
Hardware 0.17 1.68 5882 595 17%

Worst Results
Avg Peak Avg Peak

Simulation 63.48 19.40 14.60 50.55 98%
Hardware 3.12 0.32 320.51 3125.00 19%

VI. DISCUSSION AND CONCLUSION

Regarding limitations, we find the lack of on-board or
external perception as the main limiting factor of hard-
ware experiments since the SOLO12 is unable to carry
such equipment due to its lightweight actuators and low-
cost 3D-printed design. The use of a 2.5D height map for
the observation matrix, assigning a single elevation value
(z) to each (x, y) coordinate around the robot, constrains
training scenarios that involve navigating beneath obstacles.
While the current elevation map adequately represents terrain
variations in height, this model does not support scenarios
where a robot must crouch under overhangs, thus limiting the
robot’s exposure to complex three-dimensional manoeuvring
challenges in simulated environments. While the SOLO12
robot can jump with its actuators producing a peak torque
of 3 Nm, we found that its 3D-printed parts can break on
larger impacts and did not pursue jumps further. To explore
more dynamic tasks in the future we plan to integrate active
perception via an external motion capture system.

To improve the training efficiency, differentiable simula-
tion for better convergence could be explored as proposed
by the recently released work in [51]. This could further
enhance the training efficiency by using the true gradient of
the loss instead of a surrogate approximation.

In conclusion, our adaptive reward shaping framework
enhances the adaptability of quadruped locomotion policies
by dynamically adjusting rewards based on real-time infer-
ences about the robot’s surroundings. We demonstrated the
enhanced adaptability through the integration of two new
terrains into an existing training framework. Our training
method overcomes the limitations of competing reward func-
tions thereby eliminating the training and deployment com-
putational overhead of multi-policy frameworks. We train
and test an example policy to adapt to various environmental
conditions without extensive retraining on a single commer-
cially available laptop. Validated on the SOLO12 quadruped
robot, our approach demonstrates practical applicability in
scenarios like search and rescue. Future work will aim to
automate the trigger condition with pattern recognition to
further ease the adoption of adaptive reward shaping.

For more information, example videos, and to get started
using our adaptive reward framework, we recommend visit-
ing our website hosted at https://adaptive-rewards.github.io



REFERENCES

[1] X. Hu, F. He, P. Xiao, T. Wang, D. Zhang, X. Zhou, and Y. Fan,
“Design of a quadruped inspection robot used in substation,” in
2021 IEEE 4th Advanced Information Management, Communicates,
Electronic and Automation Control Conference (IMCEC), vol. 4, 2021,
pp. 766–769.

[2] K. Hashimoto, T. Matsuzawa, T. Teramachi, K. Uryu, X. Sun,
S. Hamamoto, A. Koizumi, and A. Takanishi, “A four-limbed disaster-
response robot having high mobility capabilities in extreme environ-
ments,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 5398–5405.

[3] H. Kolvenbach and M. Hutter, “Life extension: An autonomous dock-
ing station for recharging quadrupedal robots,” in Field and Service
Robotics: Results of the 11th International Conference. Springer,
2018, pp. 545–557.

[4] J. He and F. Gao, “Mechanism, actuation, perception, and control of
highly dynamic multilegged robots: A review,” Chinese Journal of
Mechanical Engineering, vol. 33, no. 79, 2020. [Online]. Available:
https://doi.org/10.1186/s10033-020-00485-9

[5] R. W. Xu, K. Chin Hsieh, U. H. Chan, H. Un Cheang, W. K. Shi,
and C. Tin Hon, “Analytical review on developing progress of the
quadruped robot industry and gaits research,” in 2022 8th International
Conference on Automation, Robotics and Applications (ICARA), 2022,
pp. 1–8.

[6] H. Chai, Y. Li, R. Song, G. Zhang, Q. Zhang, S. Liu, J. Hou, Y. Xin,
M. Yuan, G. Zhang, and Z. Yang, “A survey of the development of
quadruped robots: Joint configuration, dynamic locomotion control
method and mobile manipulation approach,” Biomimetic Intelligence
and Robotics, vol. 2, no. 1, p. 100029, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2667379721000292

[7] R. W. Xu, K. Chin Hsieh, U. H. Chan, H. Un Cheang, W. K. Shi,
and C. Tin Hon, “Analytical review on developing progress of the
quadruped robot industry and gaits research,” in 2022 8th International
Conference on Automation, Robotics and Applications (ICARA), 2022,
pp. 1–8.

[8] D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour:
Learning agile navigation for quadrupedal robots,” arXiv preprint
arXiv:2306.14874, 2023.

[9] G. Bellegarda, C. Nguyen, and Q. Nguyen, “Robust quadruped jump-
ing via deep reinforcement learning,” 2023.

[10] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” 2023.

[11] J. Viereck, A. Meduri, and L. Righetti, “Valuenetqp: Learned
one-step optimal control for legged locomotion,” in Proceedings of
The 4th Annual Learning for Dynamics and Control Conference, ser.
Proceedings of Machine Learning Research, vol. 168. PMLR, June
2022, pp. 931–942. [Online]. Available: https://proceedings.mlr.press/
v168/viereck22a.html

[12] A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti,
“Biconmp: A nonlinear model predictive control framework for whole
body motion planning,” IEEE Transactions on Robotics, p. 1–18,
2023. [Online]. Available: https://arxiv.org/abs/2201.07601

[13] S. Gai, S. Lyu, H. Zhang, and D. Wang, “Continual reinforcement
learning for quadruped robot locomotion,” Entropy, vol. 26, no. 1,
p. 93, 2024.

[14] Z.-Y. Fu, D.-C. Zhan, X.-C. Li, and Y.-X. Lu, “Automatic suc-
cessive reinforcement learning with multiple auxiliary rewards,” in
Proceedings of the 28th International Joint Conference on Artificial
Intelligence, ser. IJCAI’19. AAAI Press, 2019, p. 2336–2342.

[15] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and
H. Zhao, “Robot parkour learning,” arXiv preprint arXiv:2309.05665,
2023.

[16] J. Wang, C. Hu, and Y. Zhu, “Cpg-based hierarchical locomotion
control for modular quadrupedal robots using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp.
7193–7200, 2021.

[17] Y. Kim, B. Son, and D. Lee, “Learning multiple gaits of quadruped
robot using hierarchical reinforcement learning,” 2021.

[18] W. Tan, X. Fang, W. Zhang, R. Song, T. Chen, Y. Zheng, and Y. Li,
“A hierarchical framework for quadruped omnidirectional locomotion
based on reinforcement learning,” IEEE Transactions on Automation
Science and Engineering, pp. 1–12, 2023.

[19] J. Ren, Y. Dai, B. Liu, P. Xie, and G. Wang, “Hierarchical vision
navigation system for quadruped robots with foothold adaptation

learning,” Sensors, vol. 23, no. 11, 2023. [Online]. Available:
https://www.mdpi.com/1424-8220/23/11/5194

[20] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in
minutes using massively parallel deep reinforcement learning,” 2022.

[21] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot
control for generalization with multiplicity of behavior,” Conference
on Robot Learning, 2022.

[22] E. Chane-Sane, P.-A. Leziart, T. Flayols, O. Stasse, P. Souères, and
N. Mansard, “Cat: Constraints as terminations for legged locomotion
reinforcement learning,” 2024.

[23] M. Shafiee, G. Bellegarda, and A. Ijspeert, “Manyquadrupeds: Learn-
ing a single locomotion policy for diverse quadruped robots,” 2024.

[24] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 1–9.

[25] D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” 2019.

[26] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, et al., “Anymal-a
highly mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ
international conference on intelligent robots and systems (IROS).
IEEE, 2016, pp. 38–44.

[27] M. Hutter, C. Gehring, A. Lauber, F. Gunther, C. D. Bellicoso,
V. Tsounis, P. Fankhauser, R. Diethelm, S. Bachmann, M. Blösch,
et al., “Anymal-toward legged robots for harsh environments,” Ad-
vanced Robotics, vol. 31, no. 17, pp. 918–931, 2017.

[28] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, 2018.

[29] C. Gehring, P. Fankhauser, L. Isler, R. Diethelm, S. Bachmann,
M. Potz, L. Gerstenberg, and M. Hutter, “Anymal in the field: Solving
industrial inspection of an offshore hvdc platform with a quadrupedal
robot,” in Field and Service Robotics: Results of the 12th International
Conference. Springer, 2021, pp. 247–260.

[30] M. Hutter, C. Gehring, M. A. Höpflinger, M. Blösch, and R. Siegwart,
“Toward combining speed, efficiency, versatility, and robustness in
an autonomous quadruped,” IEEE Transactions on Robotics, vol. 30,
no. 6, pp. 1427–1440, 2014.

[31] Y. Ding, A. Pandala, C. Li, Y.-H. Shin, and H.-W. Park,
“Representation-free model predictive control for dynamic motions
in quadrupeds,” IEEE Transactions on Robotics, vol. 37, no. 4, pp.
1154–1171, 2021.

[32] Y. Ding, A. Pandala, and H.-W. Park, “Real-time model predictive
control for versatile dynamic motions in quadrupedal robots,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 8484–8490.

[33] J. He, J. Shao, G. Sun, and X. Shao, “Survey of quadruped robots
coping strategies in complex situations,” Electronics, vol. 8, no. 12, p.
1414, 2019.

[34] P. Biswal and P. K. Mohanty, “Development of quadruped walking
robots: A review,” Ain Shams Engineering Journal, vol. 12, no. 2, pp.
2017–2031, 2021.

[35] H. Taheri and N. Mozayani, “A study on quadruped mobile robots,”
Mechanism and Machine Theory, vol. 190, p. 105448, 2023.

[36] P.-A. Léziart, T. Corbères, T. Flayols, S. Tonneau, N. Mansard,
and P. Souères, “Improved control scheme for the solo quadruped
and experimental comparison of model predictive controllers,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 9945–9952, 2022.

[37] P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. D.
Prete, “Optimization-based control for dynamic legged robots,” 2022.

[38] D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, and
S. Kim, “Vision aided dynamic exploration of unstructured terrain
with a small-scale quadruped robot,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 2464–
2470.

[39] F. Jenelten, R. Grandia, F. Farshidian, and M. Hutter, “TAMOLS:
Terrain-aware motion optimization for legged systems,” vol. 38, 2022.

[40] S. Chamorro, V. Klemm, M. d. l. I. Valls, C. Pal, and R. Siegwart,
“Reinforcement learning for blind stair climbing with legged and
wheeled-legged robots,” arXiv preprint arXiv:2402.06143, 2024.

[41] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,

https://doi.org/10.1186/s10033-020-00485-9
https://www.sciencedirect.com/science/article/pii/S2667379721000292
https://www.sciencedirect.com/science/article/pii/S2667379721000292
https://proceedings.mlr.press/v168/viereck22a.html
https://proceedings.mlr.press/v168/viereck22a.html
https://arxiv.org/abs/2201.07601
https://www.mdpi.com/1424-8220/23/11/5194


“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[42] G. Bellegarda, Y. Chen, Z. Liu, and Q. Nguyen, “Robust high-speed
running for quadruped robots via deep reinforcement learning,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022, pp. 10 364–10 370.

[43] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” 2018.

[44] X. Han and M. Zhao, “Learning quadrupedal high-speed running on
uneven terrain,” Biomimetics, vol. 9, no. 1, p. 37, 2024.

[45] J. Qi, H. Gao, H. Su, L. Han, B. Su, M. Huo, H. Yu, and Z. Deng, “Re-
inforcement learning-based stable jump control method for asteroid-
exploration quadruped robots,” Aerospace Science and Technology,
vol. 142, p. 108689, 2023.

[46] C. Zhang, J. Sheng, T. Li, H. Zhang, C. Zhou, Q. Zhu, R. Zhao,
Y. Zhang, and L. Han, “Learning highly dynamic behaviors for
quadrupedal robots,” arXiv preprint arXiv:2402.13473, 2024.

[47] T. Miki, J. Lee, L. Wellhausen, and M. Hutter, “Learning to walk in
confined spaces using 3d representation,” 2024.

[48] Y. Ji, G. B. Margolis, and P. Agrawal, “Dribblebot: Dynamic legged
manipulation in the wild,” 2023.

[49] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” 2019.

[50] L. Smith, I. Kostrikov, and S. Levine, “A walk in the park: Learning
to walk in 20 minutes with model-free reinforcement learning,” 2022.

[51] Y. Song, S. Kim, and D. Scaramuzza, “Learning quadruped locomotion
using differentiable simulation,” 2024.

[52] S. Devlin, D. Kudenko, and M. Grzes, “An empirical study of
potential-based reward shaping and advice in complex, multi-agent
systems,” Adv. Complex Syst., vol. 14, pp. 251–278, 2011. [Online].
Available: https://api.semanticscholar.org/CorpusID:7654948

[53] A. C. Tenorio-Gonzalez, E. F. Morales, and L. Villaseñor-Pineda,
“Dynamic reward shaping: Training a robot by voice,” in Advances in
Artificial Intelligence – IBERAMIA 2010, A. Kuri-Morales and G. R.
Simari, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 483–492.

[54] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A.
McIlraith, “Reward machines: Exploiting reward function structure in
reinforcement learning,” Journal of Artificial Intelligence Research,
vol. 73, p. 173–208, Jan. 2022. [Online]. Available: http://dx.doi.org/
10.1613/jair.1.12440

[55] M. Grzes and D. Kudenko, “Plan-based reward shaping for reinforce-
ment learning,” in 2008 4th International IEEE Conference Intelligent
Systems, vol. 2, 2008, pp. 10–22–10–29.

[56] J. Song, Z. Zhou, J. Liu, C. Fang, Z. Shu, and L. Ma, “Self-refined
large language model as automated reward function designer for deep
reinforcement learning in robotics,” 2023.

[57] T. Xie, S. Zhao, C. H. Wu, Y. Liu, Q. Luo, V. Zhong, Y. Yang,
and T. Yu, “Text2reward: Reward shaping with language models for
reinforcement learning,” 2024.

[58] S. Devlin and D. Kudenko, “Dynamic potential-based reward shaping,”
in Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2012), 2012, pp. 433–440.

[59] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th Annual International Conference
on Machine Learning, ser. ICML ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 41–48. [Online].
Available: https://doi.org/10.1145/1553374.1553380

[60] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum learning:
A survey,” 2022.

[61] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and
P. Stone, “Curriculum learning for reinforcement learning domains: A
framework and survey,” 2020.

[62] S. Chen, B. Zhang, M. W. Mueller, A. Rai, and K. Sreenath, “Learning
torque control for quadrupedal locomotion,” 2023.

[63] X. B. Peng and M. van de Panne, “Learning locomotion skills using
deeprl: does the choice of action space matter?” in Proceedings
of the ACM SIGGRAPH / Eurographics Symposium on Computer

Animation, ser. SCA ’17. ACM, July 2017. [Online]. Available:
http://dx.doi.org/10.1145/3099564.3099567

[64] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” 2021.

[65] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, Jan. 2019.
[Online]. Available: http://dx.doi.org/10.1126/scirobotics.aau5872

[66] M. Aractingi, P.-A. Léziart, T. Flayols, J. Perez, T. Silander, and
P. Souères, “Controlling the solo12 quadruped robot with deep
reinforcement learning,” Scientific Reports, vol. 13, no. 1, July 2023.
[Online]. Available: http://dx.doi.org/10.1038/s41598-023-38259-7

[67] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[68] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, “Paired open-
ended trailblazer (poet): Endlessly generating increasingly complex
and diverse learning environments and their solutions,” arXiv preprint
arXiv:1901.01753, 2019.

[69] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic goal gen-
eration for reinforcement learning agents,” in International conference
on machine learning. PMLR, 2018, pp. 1515–1528.

[70] X. Zhang, Y. Wu, H. Wang, F. Iida, and L. Wang, “Adaptive
locomotion learning for quadruped robots by combining DRL with a
cosine oscillator based rhythm controller,” Applied Sciences, vol. 13,
no. 19, 2023. [Online]. Available: https://www.mdpi.com/2076-3417/
13/19/11045

[71] Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne, “Allsteps:
curriculum-driven learning of stepping stone skills,” in Computer
Graphics Forum, vol. 39, no. 8. Wiley Online Library, 2020, pp.
213–224.

https://api.semanticscholar.org/CorpusID:7654948
http://dx.doi.org/10.1613/jair.1.12440
http://dx.doi.org/10.1613/jair.1.12440
https://doi.org/10.1145/1553374.1553380
http://dx.doi.org/10.1145/3099564.3099567
http://dx.doi.org/10.1126/scirobotics.aau5872
http://dx.doi.org/10.1038/s41598-023-38259-7
https://www.mdpi.com/2076-3417/13/19/11045
https://www.mdpi.com/2076-3417/13/19/11045

	Introduction
	Related Work
	Optimal Control
	Learning-based Methods
	Training Efficiency
	Adapting Rewards

	Preliminaries
	States and Observations
	Actions
	Training Setup

	Adaptive Reward Shaping
	Example Terrain Adaptive Reward: Foot Clearance
	Inferring Terrain Type from The Elevation Map

	Simulation and Hardware Experiments
	Training Efficiency
	Evaluation in Simulation and Real-World
	Transferability
	Neural Network Computation and Control Loop Performance

	Discussion and Conclusion
	References

